Nonparametric Estimators in Long-horizon regressions with nonstationary covariates

نویسنده

  • Jin Lee
چکیده

We consider predictability in long-horizon regression models with nonstationary predictors. The predictability is represented as the limiting form of the sum of covariances between long-horizon regressand and ...rst di¤erences of integrated covariates. Kernel-based nonparametric estimator for predictability is considered. Asymptotic mean squared errors and normality of the estimator are presented. It is found that as the horizon grows to longer horizons, convergence rate of the estimators becomes slower than that in the case of shorthorizon model. Our results provide extensions of short-horizon inferences in Maynard and Shimotsu (2008) to long-horizon regressions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonparametric prediction of nonstationary spatio-temporal processes

In spatial statistics often the response variable at a given location and time is observed together with some covariates which are known to influence the response. In several applications the relationship between the response and covariates may be unknown, and to prevent misspecification of the model, a nonparametric approach could be appropriate. In this paper prediction and forecasting of the...

متن کامل

Structural Spurious Regressions and A Hausman-Wu-type Cointegration Test∗

Economic models often imply that certain variables are cointegrated. However, tests often fail to reject the null hypothesis of no cointegration for these variables. One possible explanation of these test results is that the error is unit root nonstationary due to a nonstationary measurement error in one variable. For example, currency held by domestic economic agents for legitimate transaction...

متن کامل

Differenced-Based Double Shrinking in Partial Linear Models

Partial linear model is very flexible when the relation between the covariates and responses, either parametric and nonparametric. However, estimation of the regression coefficients is challenging since one must also estimate the nonparametric component simultaneously. As a remedy, the differencing approach, to eliminate the nonparametric component and estimate the regression coefficients, can ...

متن کامل

Nonparametric Regression for Dependent Data in the Errors-in-Variables Problem

We consider the nonparametric estimation of the regression functions for dependent data. Suppose that the covariates are observed with additive errors in the data and we employ nonparametric deconvolution kernel techniques to estimate the regression functions in this paper. We investigate how the strength of time dependence affects the asymptotic properties of the local constant and linear esti...

متن کامل

Nonparametric Regression Estimation under Kernel Polynomial Model for Unstructured Data

The nonparametric estimation(NE) of kernel polynomial regression (KPR) model is a powerful tool to visually depict the effect of covariates on response variable, when there exist unstructured and heterogeneous data. In this paper we introduce KPR model that is the mixture of nonparametric regression models with bootstrap algorithm, which is considered in a heterogeneous and unstructured framewo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009